A NEW PIERICIDIN RHAMNOSIDE, 3'-RHAMNOPIERICIDIN A₁

Sir:

In the course of our screening program for new antibiotics from microorganisms, we have isolated a new piericidin group antibiotic named 3'-rhamnopiericidin A_1 (SN-198-C) from the culture broth of *Streptomyces* sp. SN-198. We report here the isolation, structure, and biological properties of this antibiotic.

The organism was isolated from a soil sample collected in Ishibashi-machi, Tochigi Prefecture, Japan and taxonomic studies indicated that it belonged to the genus Streptomyces. The strain was cultured in a 30-liter jar fermenter at 27°C in 18 liters of medium (glucose 2%, soluble starch 1%, meat extract 0.1%, dried yeast 0.4%, soybean flour 2.5%, NaCl 0.2%, and K₂HPO₄ 0.005%). The fermentation broth was filtered and the mycelium was extracted with 80% acetone. After removal of acetone, the extract was combined with the culture filtrate and the mixture was extracted with ethyl acetate. After drying over Na₂SO₄ (anhydrous), the ethyl acetate extract was concentrated in vacuo to an oily residue (27.3 g). The oily residue was chromatographed on a silica gel column $(3 \times 40 \text{ cm})$ with chloroform - methanol $(100: 0 \rightarrow 98: 2 \rightarrow 96: 4 \rightarrow 98)$ 94:6). The major compound produced by SN-198 was piericidin A_1 (SN-198-E)^{1,2)} which was eluted with chloroform-methanol (98:2) before 3'-rhamnopiericidin A₁. 3'-Rhamnopiericidin A₁ fraction (94:6) was concentrated *in vacuo* to dryness (280 mg). After dissolving in a small amount of methanol, it was loaded onto a Sephadex LH-20 column (2.7 × 86 cm) using methanol as the eluent. Final purification was carried out by preparative HPLC using Nucleosil $5C_{18}$ (20 × 250 mm) with 85% methanol. After concentration and lyophilization, it gave 3'-rhamnopiericidin A₁ (12 mg) as a white powder.

3'-Rhamnopiericidin A₁ is a white amorphous powder which gradually changes to an oily substance above 82°C: $[\alpha]_{2}^{25} - 44.0^{\circ}$ (*c* 0.1, MeOH); molecular formula C₃₁H₄₇NO₈; FAB-MS *m*/z 562 (M+H)⁺, 398 ((M-164)+H)⁺; elementary analysis, *Anal* Calcd for C₃₁H₄₇NO₈ $\frac{1}{2}$ H₂O: C 65.26, H 8.42, N 2.46. Found: C 64.82, H 8.30, N 2.40. UV λ_{max}^{MeOH} nm (ε) 231 (39,300), 237 (37,700), 276 (7,200); IR ν_{max} (KBr) cm⁻¹ 3420, 2930, 1580, 1470, 1400, 1120, 1060, 970.

3'-Rhamnopiericidin A_1 is soluble in methanol, ethanol, acetone, ethyl acetate, chloroform, but not soluble in water and *n*-hexane. The UV spectrum of 3'-rhamnopiericidin A_1 was very similar to that of piericidin A_1 . Determination of the structure of 3'-rhamnopiericidin A_1 was achieved by comparison of the ¹H and ¹³C NMR spectra with those of piericidin A_1 . The ¹H NMR spectrum of 3'rhamnopiericidin A_1 is shown in Fig. 1. It is very

Fig. 1. ¹H NMR spectrum of 3'-rhamnopiericidin A₁ (CDCl₃, 500 MHz).

	Piericidin A ₁ (SN-198-E) ^a	3'-Rhamnopierici- din A ₁ (SN-198-C)
C-1	34.3	34.7 t
C-2	122.2	122.1 d
C-3	134.6	135.0 s
C-4	43.0	43.0 t
C-5	126.6	126.6 d
C-6	135.7	135.7 d
C-7	135.7	135.0 s
C-8	133.0	133.2 d
C-9	36.9	36.9 d
C-10	82.7	82.8 d
C-11	135.8	136.0 s
C-12	123.2	123.5 d
C-13	13.0	13.1 q
C-14	10.5	10.6 q
C-15	17.3	17.4 q
C-16	16.5	16.6 q
C-17	13.0	13.2 q
C-1′	150.7	151.1 s
C-2'	111.9	117.4 s
C-3'	154.0	155.8 s
C-4′	127.8	133.2 s
C-5'	153.5	154.7 s
C-6'	10.4	10.6 q
C-7′	60.4	60.5 q
C-8′	52.9	53.3 q
C-1″		101.8 d
C-2"	_	70.9 d
C-3″	~	71.7 d
C-4″		73.1 d
C-5″	_	69.8 d
C-6"		17.5 q

Table 1. Assignments of ¹³C NMR spectra of piericidin aidin A

Assignments were based on comparison with the literature2).

Assignments were based on ¹H-¹H COSY and ¹³C-¹H COSY spectra.

similar to that of piericidin A1, except for an additional five protons including one characteristic anomeric proton at δ 5.60 (overlapped with 5-H) and one methyl proton. Assignments for the ¹³C NMR spectra of piericidin A1 and 3'-rhamnopiericidin A_1 are shown in Table 1. In the ¹³C NMR spectrum of 3'-rhamnopiericidin A1, six new signals derived from rhamnoside (C-1" ~ C-6") are observed in comparison with that of piericidin A_1 .

On acid hydrolysis with 5 N HCl at 60°C for 30 minutes, 3'-rhamnopiericidin A1 afforded rhamnose identified by GC-MS. In the ¹³C NMR spectrum of 3'-rhamnopiericidin A1, C-2' (& 117.4) and C-4' (δ 133.2) show significant down-field shifts (about 5 ppm) and C-3' (δ 155.8) show a slight down-field shift. The down-field shifts are similar to the case of glucopiericidin B (piericidin A1, 3'-O-D-glucoside)³⁾ and indicate that C-3' of 3'-rhamnopiericidin A₁ is substituted with rhamnose. Other signals were identical with those of piericidin A1. From the results described above, the structure of 3'-rhamnopiericidin A1 is determined as piericidin A1, 3'-Orhamnoside as shown in Fig. 2.

Fig. 2. Structure of 3'-rhamnopiericidin A1.

Piericidin A₁

3'-Rhamnopiericidin A1 ÓН ÓН

Table 2. Antimicrobial spectra of 3'-rhamnopiericidin A_1 and piericidin A_1 .

	Diameter of inhibition zone (mm) ^a	
Test organisms	3'-Rhamnopiericidin A ₁	Piericidin A ₁
Pseudomonas aeruginosa N-10 L-form	14	12
Xanthomonas oryzae IFO 3312	14	35
X. citri IFO 3781	0	(23) ^b
Botrytis cinerea IFO 5365	0	(19) ^b
Alternaria mali IFO 8984	0	(21) ^b
Pvricularia orvzae IFO 5994	19	31
Trichophyton rubrum	0	15
Chlorella vulgaris	0	41

Paper disks (diameter, 8 mm) were used containing $20 \mu g$ of the antibiotic.

Partial inhibition.

3'-Rhamnopiericidin A_1 showed toxicity to HeLa and KB cells in culture. IC₅₀ were 2.8 and 0.74 µg/ml, respectively. It also showed antibacterial activity against Gram-negative bacteria and fungi, but activity was less than that of piericidin A_1 (Table 2).

Several piericidin antibiotics, piericidins A^{4} and B^{5} , $A_1 \sim A_4$, $B_1 \sim B_4$, $C_1 \sim C_4$ and $D_1 \sim D_4^{1,2}$, and piericidin glucoside antibiotics, glucopiericidins A and B^{3} , glucopiericidinols A_1 and A_2^{6} have been isolated. Glucopiericidins A, B, and glucopiericidinols A_1 , A_2 are reported to contain D-glucose. However, 3'-rhamnopiericidin A_1 containing rhamnose is clearly different from these antibiotics. Other substances produced by SN-198 are now under investigation.

Acknowledgments

We are grateful to Drs. K. ISONO, M. URAMOTO and J. UZAWA, RIKEN, the Institute of Physical and Chemical Research, for their powerful discussions and NMR measurements.

KEN-ICHI KIMURA Shōji Nakayama Noboru Nakajima Makoto Yoshihama Nobuo Miyata Gosei Kawanishi

Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Ishibashi-machi, Shimotsuga-gun, Tochigi 329-05, Japan

(Received April 4, 1990)

References

- YOSHIDA, S.; K. YONEYAMA, S. SHIRAISHI, A. WATANABE & N. TAKAHASHI: Isolation and physical properties of new piericidins produced by *Strepto*myces pactum. Agric. Biol. Chem. 41: 849~853, 1977
- YOSHIDA, S.; K. YONEYAMA, S. SHIRAISHI, A. WATANABE & N. TAKAHASHI: Chemical structures of new piericidins produced by *Streptomyces pactum*. Agric. Biol. Chem. 41: 855~862, 1977
- MATSUMOTO, M.; K. MOGI, K. NAGAOKA, S. ISHIZEKI, R. KAWAHARA & T. NAKASHIMA: New piericidin glucosides, glucopiericidins A and B. J. Antibiotics 40: 149~156, 1987
- 4) TAMURA, S.; N. TAKAHASHI, S. MIYAMOTO, R. MORI, S. SUZUKI & J. NAGATSU: Isolation and physiological activities of piericidin A, a natural insecticide produced by *Streptomyces*. Agric. Biol. Chem. 27: 576~582, 1963
- 5) TAKAHASHI, N.; A. SUZUKI, Y. KIMURA, S. MIYAMOTO, S. TAMURA, T. MITSUI & J. FUKAMI: Isolation, structure and physiological activities of piericidin B, natural insecticide produced by a *Streptomyces*. Agric. Biol. Chem. 32: 1115~1122, 1968
- 6) FUNAYAMA, S.; M. ISHIBASHI, Y. ANRAKU, M. MIYAUCHI, H. MORI, K. KOMIYAMA & S. ŌMURA: Novel cytocidal antibiotics, glucopiericidinols A₁ and A₂. Taxonomy, fermentation, isolation, structure elucidation and biological characteristics. J. Antibiotics 42: 1734~ 1740, 1989